

Science and Technology Facilities Council

The UK XFEL Project: Conceptual Design

Dave Dunning, STFC Daresbury Laboratory On behalf of the project team 29th July 2024

xfel.ac.uk

Contents

- Introduction to XFELs
 - Challenges and opportunities
- Conceptual design process
 - From science requirements to facility design
- Preliminary facility design and key next-gen XFEL features
 - Multiplexing to ~6-10 FELs
 - High peak and average brightness
 - Near-transform-limited pulses
 - High pulse energy/high photon energy
 - Two-colour, synchronous sources, high data rates/AI
 - Sustainability
- Summary and next steps

Introduction to XFELs

- XFEL = X-ray Free-Electron Laser
- 'free-electron' means the electrons are not bound in atoms but 'freely' propagating in a particle accelerator

XFEL challenges and opportunities

- XFEL lasing spoils the electron bunch quality (bunches can't be re-used). So XFELs are based on *linear* accelerators: less straightforward to serve many simultaneous experiments
- The X-ray pulses are naturally far from transform limited (amplified noise). In the default SASE mode, there is an intrinsic coherence length of ~hundreds of wavelengths (hundreds of attoseconds at X-ray)

But bunch repetition rates are increasing by a factor of 10,000 compared to first-gen XFELs (~100 Hz -> ~1 MHz)
Multiplexing to more simultaneous experiments, with much higher average flux and much higher data rates

Envelope A(t) Electric field E(t) t There are many demonstrated or emerging techniques

There are many demonstrated or emerging techniques for near-transform limited pulses (i.e. high quality pulses across a range of pulse durations)

Increasing capacity and capability go hand in hand

UK XFEL conceptual design process

Understanding/defining the specification

- Capture input from the many user cases, each with different (overlapping) sets of specifications
- Incorporate new ideas developed over time

Informed by the Science Case, survey, Town Halls, Science Team meetings etc.

Specific technical solutions

 Identify and develop technical solutions to best meet each set of user requirements

Informed by research within the design team, facility visits, collaborations etc.

Compelling facility proposals

Integrate technical solutions into self-consistent facility proposals:

- Ensure compatibility of features
- Consider scope, international context, sustainability, socioeconomic factors

To develop a next-generation XFEL concept, we initially **assume a new-build facility at an international scale**, without constraints from location or from upgrading an existing machine.

Defining the specification: User survey

One of the first major activities towards the CDOA phase was a detailed survey to capture requirements

- Structured around the Science Case and recorded more granular specifications
- Captured ~70 case studies: each includes several 'tick box' parameters and text entries
- Very useful for defining high-level accelerator and FEL choices, and as a starting point for more detailed areas

UK-XFEL Facility Requirements Survey	FEL Sources Type 1 For FEL sources, feel free to tick multiple boxes to indicate a range.	Photon Energy [keV] All survey responses – sorted by science area and photon energy 0.05 0.2 0.25 1 2 3 4 5 9 10 13 20 30 40 50 100 SXR: ~0.2 - 4 keV HXR: ~4 - 100 keV 3.3 Attosecond science and non-linear X-ray spectroscopy 3.13 Chrinal X-ray probes 13 Chrinal X-ray probes
Please highlight the area of the * 2020 Science Case which concerns this submission of the survey.	Use the 'Other' fields for any comments, e.g. to highlight particularly important requirements	G S3.2 Attosecond science 3.3.3 Attosecond science 3.3.3 Attosecond science 3.3.4 (Attosecond science) 3.3.3 Attosecond science 3.3.3 Probing fundamental physics 3.2.4 Physics of scattering with coherent X-rays 3.2.4 Physics of scattering 3.2.2 New imaging techniques 3.2.2 New imaging techniques 3.2.3 Structural dynamics and beyond 3.6.4 Inverse Compton scattering gamma source 3.6.4 Inverse Compton scattering gamma source 3.6.4 Inverse Compton scattering gamma source 3.6.4 Inverse Compton scattering gamma source 3.6.4 Inverse Compton scattering gamma source 3.6.4 Inverse Compton scattering gamma source 3.6.4 Inverse Compton scattering gamma source 3.6.4 Inverse Compton scattering gamma source 3.6.4 Inverse Compton scattering gamma source 3.6.4 Inverse Compton scattering gamma source 3.6.4 Inverse Compton scattering gamma source 3.6.4 Inverse Compton scattering gamma source 3.6.4 Inverse Compton scattering gamma source<
O 3.0 Science opportunities in Physics and X-ray Photonics	$\square \le 100 \text{ Hz} \qquad \square \text{ SX } (0.2-2 \text{ keV})$	99 so report 4.2 Hot dense and warm dense matter 4.2.2 Hot dense and warm dense matter 4.4.2.4 Matter at extreme conditions 5.1 Magnetic materials and control of ultrafast magnetisative 4.1.2 Matter at extreme pressures 5.3 Imaging dynamics in nanomaterials 4.4.2.4 Matter at extreme conditions 5.2 Structural dynamics of light induced phases in quantum materials 4.1 Shocked materials and materials at extreme pressures 5.3 Imaging dynamics in nanomaterials 4.1 Shocked materials and materials at extreme pressures 5.3 Imaging dynamics in nanomaterials 4.1 Shocked materials and materials at extreme pressures 5.1 Maging dynamics in nanomaterials 4.1 Shocked materials and materials at extreme pressures 5.1 Maging dynamics in nanomaterials 4.1 Shocked materials and materials at extreme pressures 5.1 Maging dynamics in nanomaterials 4.1 Shocked materials and materials at extreme pressures 5.1 Maging dynamics in nanomaterials 4.1 Shocked materials and materials at extreme pressures 5.1 Maging dynamics in nanomaterials 4.1 Shocked materials and materials at extreme pressures 5.1 Maging dynamics in nanomaterials 4.1 Shocked materials and materials at extreme pressures
 4.0 Science opportunities for Matter in Extreme Conditions 	□ 1 kHz □ SX (2−4 keV)	5.1 For dure opportunities in magine, dynamics 5.3 Imaging dynamics in nanomaterials 6.1 Fundamentals of Reaction Dynamics: Coupling between nuclear, electronic and spin 5.3 Imaging dynamics in nanomaterials 6.2 Intense THz excitation combined with ultrafast X-ray measurement techniques 5.3 Ultrafast microscopy of nanomaterials
O Science opportunities in Quantum and Nanomaterials	□ 10 kHz □ HX (4−10 keV) □ 100 kHz □ HX (10−20 keV)	Control of the second distribution of the s
O 6.0 Science opportunities in the Chemical Sciences and Energy	□ 1 MHz □ HX (20−30 keV)	7.4 Controlling and measuring nuclear and electronic coherence within biological systems 7.5 Capturing biological function in single molecules and or within living cells with X-ray imaging 7.1.2 Sample delivery and efficiency 7.3 Dynamic Structural Biology: molecular movies of enzyme catalysis 7.4 Social micro-coratellography analysis of the Stepson and the structural biology:
O 7.0 Science opportunities in the Life Sciences		P 8.6 Industrial inspirations from deeper insights into biology: pharma to clean energy 8.4.2 Laser Machining 8.5 Gamma sources application in nuclear security and materials in nuclear industry
8.0 Opportunities for UK Industry, Society and Defence	Other: Don't know	* / 8.2 Properties of shocked materials for engineering and defence

End Station Away Day (28th Feb 2024)

FEL-1 (13 - 30 keV)

FEL-1 (20 - 40 keV)

~100 Hz – 1kHz

- Identified key end stations and relevant team members.
- Associated end stations with specific FELs and completed specification spreadsheet for each
- Follow-up meetings with each group are underway

Photon	Energy	[keV]					End	station	phot	on energy	ranges
0.05	0.2 0.25	1 2	3	4 5	9 10	13	20	30	40	50	100
	S	XR : ~0.2 – 4	1 keV		HXR : ~4 – 100 keV						
AMO (PES/C data rate, ful control, UV-I tool, option 1	AMO (PES/Coincidence) [High data rate, full polarisation control, UV-IR lasers, < 1 fs time tool, option to take full laser		TXR : ~2 – ⁻	7 keV	DI (Forward Scattering oup) [High performan	g, in SXR and HXR ce detectors/ high			RE stil	VISED VERSIO	ON (v2) opment
power]	Attose (Streaki rate, ful liquids/ straight and XPS xray-x-r	cond ng/XAS/PES) [High d I bw/high power del solids/gases with XA through geometry/ options, , 1 fs time ay modes]	lata livery, S XES tool,	M ray ass	EC (Diffraction/Spect y pulse energy/sub 20 sumed]	roscopy/Inelastic s meV bandwidth, r	cattering) [High energy/pd ep-rate set by laser but >	ower laser, hig 100 Hz should	h x- be		
	HRIXs/ x-ray abs efficience	KAS (Momentum/e sorption/XES) [Highe y, full range of syncl	nergy resolved inelaser resolution, wider r hronised sources UV	stic 30-1500 sca ange of angles /THz, sub 5fs tii	attering, high resolutio 0-1800, larger collecti ming]	on on					
		SXR/TXR X-ra mono/ but sho but with down	ay spectroscopy (v ort pulse modes with -stream spectromete	with out mono er and/or							
		seeded machir	be tunin phase scatt pink beam sources UV	s + Spectrosco ering) [Narrow for high tr, full r -MIR/THz, sub s	Dpy (XAS/XES + Liquid bandwidth x-rays, or range of synchronised 5fs timing]						
SXR/TXR AF	SXR/TXR ARPES		HXARPES	tr	trXRD (Diffraction on pumped crystals)		Very HXR scatterin	g for trXRD a	nd trPDF		Carles -
		X-ray Correla Nonlinear Sp [High rep-rate/	ntion Spectroscopy ectroscopy (Scatte /xray split & delay]	y & [H sering/TG) [H PE	ligh data rate, UV-Opt ser, SXR-HXR or electr ming, Very HXR for hig DF]	ical synchronised ons-HXR, sub 10fs h Z materials and	harmonic]	n rep-rate/ ma	Silue/red o	utline = slide 1/2 o	of Jon's list
	FEL-6 (0.05 – 1.0 keV) FEL-5 (0.25 – 3 keV) FEL-4 (1 Mapping to FELs describe)	SF	X (Diffraction/nanocr	ystals) [High rep ta rate detectors]		Open ports – fo (multiple beam tir			in campaign
			eL-4 (1 – 5 keV) cribed later	FEL-3 (3 –	- 13 keV) FEL-2 (5 – 2 FEL-2	20 keV) I (9 – 20 keV)		lon/electro spectroscop radiation sh from MEC a	Electron pulsed beams for radiolysis measurements by roscopy and scattering [need pulsed accelerators + :ion shielding] (this should probably be seen as distinct MEC and might be done at high rep-rate)		
							L-1 (13 – 30 keV)			9	

UK XFEL Next Generation Definition

- Evenly spaced, high repetition rate pulses to match samples, lasers, and detectors •
 - 100 kHz per FEL, with flexibility of repetition rate
- High efficiency facility, with a step-change in the simultaneous operation of multiple end stations
 - Minimum of six FELs, with upwards of ten end stations to be simultaneously operated
- Near transform-limited operation across the x-ray range
 - Photon energies from 0.05-20 keV
 - Pulse durations from 100 as to 100 fs
 - Non-transform-limited operation at 20-50 keV
- Widely separated, multiple colour x-rays to at least one end station
- Full array of synchronized sources ۲

Science and

Facilities Council xfel.ac.uk

Technology

- XUV-THz, e-beams, ion beams, high power & high energy lasers at high repetition rate
- Improved synchronization/timing data with external lasers to <1 fs
- Minimal carbon footprint with minimal energy consumption for both operation and build

- Multiplexing to ~6-10 FELs
- High peak and average brightness
- Near-transform-limited pulses
- High pulse energy/high photon energy
- Two-colour, synchronous sources, high data rates/Al
- Sustainability

Evolution of peak and average brightness

- Superconducting accelerator technology enables a significant increase in average brightness, as well as peak brightness
- Advanced FEL modes provide further advantages

Top-level facility design choices

- Max. photon energy strongly influences the required electron beam energy
- Repetition rate largely dictates the type of acceleration technology
- Requirements suggest
 ~8 GeV superconducting
 RF linac

Science and Technology

Facilities Counci

Facility concept: a step change in the simultaneous ~6-10 FELs independently tuneable in terms of operation of multiple end stations

photon energy, pulse duration etc. + potential direct uses of electron beam

Photon	Energy [k					Ma	pping ir	nstrumer	nts/end	d stations	to FELs		
0.05 0	0.2 0.25	1 2	3	4	5	9 10	13	2	0	30	40	50	100
	SX	R : ∼0.2 – 4	4 keV					ŀ	HXR : ~4 − 3	100 keV			
AMO (PES/Co data rate, full control, UV-IF tool, option to	AMO (PES/Coincidence) [High data rate, full polarisation control, UV-IR lasers, < 1 fs time tool, option to take full laser		2 – 7 ke	eV CDI (Forward Scattering, in SXR and HXR group) [High performance detectors/ high sample rate]						RI sti	EVISED VERSI Il under deve	ON (v2) lopment	
power]	power] Attosecond (Streaking/XA rate, full bw/l liquids/solids, straight throu		data Ilivery, AS /XES		MEC ray p assu	C (Diffraction/Spec oulse energy/sub 2 med]	troscopy/Inela 0 meV bandw	astic scat idth, rep	ttering) [High ene -rate set by laser	rgy/power laser, hi but > 100 Hz shoul	gh x- d be		
	xray-x-ray modes] HRIXs/XAS (Momentum/ene x-ray absorption/XES) [Higher efficiency, full range of synchro SXR/TXR X-ray mono/ but short			d inelastic 30- vider range o ces UV/THz, s opy (with es without mo	-1500 scatt f angles 0- ub 5fs timi	ering, high resolut 1800, larger collec ng]	tion tion						
		but with down seeded machin	ne tunin scat phase pink source	rometer and/ tering + Spe e scattering) beam for high ces UV-MIR/T	and/or Spectroscopy (XAS/XES + Liquid ing) [Narrow bandwidth x-rays, or r high tr, full range of synchronised /IR/THz, sub 5fs timing]								
SXR/TXR AR	SXR/TXR ARPES HXA		HXA ation Spectro	RPES	trXRD (Diffraction on pumped crystals) [High data rate, UV-Optical synchronised laser, SXR-HXR or electrons-HXR, sub 10fs			Very HXR scat measurement harmonic]	tering for trXRD s [High rep-rate/ n	and trPDF naybe 3rd		. 0	
		Nonlinear Spectroscopy (Scatterin			G) timing, Very HXR for high Z materials and					Blue/red outline = slide 1/2 of Jo			
FEL-6 (0.	.05 – 1.0 keV) FEL-	5 (0.25 – 3 keV)		SFX samp	(Diffraction/nanoo ble delivery/High c	crystals) [High lata rate detec	rep ctors]		Open por (multiple b	ts – for user eam time) mo	driven instrumentatior	n in campaign
		FEL-4 (1 – 5 keV) FEL-1 FEL-1			L-3 (3 – 1	(3 – 13 keV) FEL-2 (5 – 20 keV) FEL-1 (9 – 20 keV)				Ion/electron pulsed beams for radiolysis measure spectroscopy and scattering [need pulsed accelerators radiation shielding] (this should probably be seen as d from MEC and might be done at high rep-rate)			
								FEL-:	L (13 – 30 keV) FEL <u>-1</u>	(20 – 40 keV)		~100 Hz ¹	.5

Near-transform-limited pulses

 Attosecond pulses tightly synchronised to external sources (e.g. XLEAP)

Advances in high reprate lasers (e.g. Kagome fibres) for ≤ 1 MHz UV **seeding** + harmonic FEL conversion to ≤ 2 keV

Generating near-transform-limited pulses across a wide range of energies and pulse lengths requires a variety of techniques

> **HB-SASE** for 25keV, 2.5 fs duration, TW peak power, >mJ pulse energy, 8 × 10⁻⁵ FWHM BW, at any e-beam repetition rate **HB-SASE** schematic Electron delay Enhanced self-• seeding for few-GW 30 fs stable coherent SXR pulses Cavity XFELs: RAFEL, **XFELO** for narrowest

> > bandwidth

Proposed FEL modes

Each FEL has 1-3 primary operating modes, covering both short-pulse and long-pulse options

*via booster, possibly at lower rep. rate

Pulse durations estimated from simulations/scaling, intermediates between short and long pulse modes also accessible.

Other FEL capabilities

High pulse energy/high photon energy

- Requirement for 10's of mJ at 5-10keV, and as many mJ as possible at up to 40keV
- To approach 10's <u>mJ</u> pulse energy, and to reach 40keV, we need a GeV – assume booster to ~12 GeV
- But we also need a wide photon energy range....
- · Suggestion is to use an undulator with dual periods.
- · EuXFEL are developing a planar SCU which incorporates period doubling:
- Superconducting undulator coils with period length doubling

- Widely-separated two-colour capability could be a key feature of a next-generation XFEL
- Various concepts to generate SXR + HXR combinations

han 8 • We need

At maximum current of 450A:

At 12 GeV:

(ke) 30

20

10

• SCU17: Period 17mm, B = 1.26T, K = 2

SCU34: Period 34mm, B = 2.6T, K = 8.54

SCU17: Tunes 26keV (K = 2) to 53keV (K = 1)

SCU34: Tunes 1keV (K = 8.54) to 26keV (K = 1)

•

We need a beam energy considerably greater than 8 GeV – assume booster to ~12 GeV

Demand for 10's mJ pulse energy at 5-10 keV,

Potential to use dual-period undulators

and to reach 40 keV

Concepts for twocolour

- Widely-separated two-colour capability could be a key feature of a next-generation XFEL
- End station away day activities identified a specific combination for detailed studies ("FEL-5b" + FEL-2 i.e SXR/HXR)
- 3 concepts developed with similar key features:
 - bunch pattern from the injector is adjusted to bring two bunches into adjacent RF cycles (Δt = 0.77 ns)
 - a GHz subharmonic deflecting cavity used to deflect one bunch onto an adjacent FEL
 - path length difference compensates the temporal separation

Technology Facilities Council Xfel. ac. uk

Other key facility features

Synchronous sources

A laser facility as well as an XFEL facility:

- High rep. rate femtosecond pumping from 10 nm 10 μm, as per UK Artemis and Ultra facilities
- A high power (multi-PW, >10²² Wcm⁻²) and high energy (kJ-class) laser facility as large as budget allows
 - Scalable and tunable diode-pumped laser technology (e.g. CLF DiPOLE)
 - High repetition-rate (>10 Hz)

Science and

Facilities Council

Technology

xfel.ac.uk Central Laser Facility's

Next-gen XFELs are expected to be some of the biggest data machines on the planet

Unprecedented requirements in both data rates (towards TB/s) and scale (PB per data set). Al potential for real-time feedback for experiment steering. Trend for data processing at the detector as part of combined detector-data pipeline

Focus is on the following areas:

- Data handling
- Applications of Machine Learning at an XFEL
- Conceptual designs and frameworks to enable Machine Learning
- Developing connections with relevant AI and Exascale expertise within the UK

Data Centres

Footprint ~ 80x30m Power ~ 6MW

Sustainability

The UK accelerator community is already very active in developing more sustainable technologies:

- Using permanent magnets instead of electromagnets
- Making use of different superconducting materials and coatings for RF cavities so that they can
 operate at 4K instead of 2K
- Developing more efficient RF power sources and much faster RF cavity tuners

In addition we are assessing accelerators more broadly in terms of carbon footprint throughout the full project life cycles (many other factors besides accelerator technology: buildings, travel, data centres etc.). This analysis will continue and feed directly into the CDOA project.

ASTEC-SATF-0001 v0.1

28 November 2022 ben.shepherd@stfc.ac.uk

An Analysis of Sustainable Practice in Particle Accelerator Infrastructures

Ben Shepherd, Louise Cowie, Anthony Gleeson, Gary Hughes, Storm Mathisen, Katherine Morrow, Hywel Owen, Andrew Vick STFC Daresbury Laboratory Warrington WA4 4AD, United Kingdom

Keywords: particle, accelerator, sustainability, carbon

Preliminary layout (1)

A preliminary layout has been developed with 6 FELs covering a wide photon energy range, and updates are in progress:

LINAC 8 GeV ~750 m

Spreader

+11.5GeV

vities - up to N~30

~1.35km

Acceleration Boost NCRF Linac (100Hz)

- Two photo-injectors, with multiple lasers each
- Capacity for 10 FELs or direct uses of electron beam (e.g. accelerator test line)
- End station layouts being developed

SCRF Linac @1MHz rep rate

xfel.ac.uk

FELL- 20 WILL FELs both sides of the central axis

FEL

FEL-6

FEL-5

FEL-4

FEL-3

FEL-2

FEL-1

~1.5km

6x 150kW Beam Dumps

Tuning

0.05 - 1.0 keV

0.25 - 3.0 keV

1.0 – 5.0 keV

3.0 - 13.0 keV

5.0 - 20.0 keV

9 – 20 keV

 $20 - 40 \text{ keV}^*$

* With booster

Gun & Photo-injector

Science and

Facilities CouldCil

Technology

Preliminary layout (2)

Various options are still being considered for different aspects of the design, aiming to produce a self-consistent design by October 2024

Summary and next steps

- XFELs are a revolutionary technology, which are set to develop substantially in capability and capacity in coming years
- We've formed strong links with existing XFELs, working towards similar aims
- We've made significant progress in developing a concept to meet the key requirements: self-consistent design by October 2024
- Next, we will compare UK vs international investment options + identify key R&D areas for future phases
- Continuing Town Hall meeting series to extend the community and inform the design <u>https://xfel.ac.uk/events/</u>
 - North-West England Townhall (hosted by Royce Institute, 8th and 9th August 2024)
 Focus discussion topic: Electronics, photonics and quantum technologies
 - Wales Townhall (hosted Cardiff 17th and 18th September 2024)
 Focus discussion topic: Advanced materials and manufacturing

UK XFEL

Science and Technology Facilities Council

Science Team

Other XFELs

Science and Technology Facilities Council

Thank You

- North-West England Townhall (hosted by Royce Institute, 8th and 9th August 2024)
 Focus discussion topic: Electronics, photonics and quantum technologies
- Wales Townhall (hosted Cardiff 17th and 18th September 2024) Focus discussion topic: Advanced materials and manufacturing

Contact: <u>ukxfel@stfc.ac.uk</u>

High pulse energy/high photon energy

- Requirement for 10's of mJ at 5-10keV, and as many mJ as possible at up to 40keV
- To approach 10's mJ pulse energy, and to reach 40keV, we need a beam energy considerably greater than 8 GeV – assume booster to ~12 GeV
- But we also need a wide photon energy range....
- Suggestion is to use an undulator with dual periods.
- EuXFEL are developing a planar SCU which incorporates period doubling:

Superconducting undulator coils with period length doubling

- At maximum current of 450A:
 - SCU17: Period 17mm, B = 1.26T, K = 2
 - SCU34: Period 34mm, B = 2.6T, K = 8.54

• At 12 GeV:

- SCU17: Tunes 26keV (K = 2) to 53keV (K = 1)
- SCU34: Tunes 1keV (K = 8.54) to 26keV (K = 1)

Concepts for twocolour

- Widely-separated two-colour capability could be a key feature of a next-generation XFEL
- End station away day activities identified a specific combination for detailed studies ("FEL-5b" + FEL-2 i.e SXR/HXR)
- 3 concepts developed with similar key features:
 - bunch pattern from the injector is adjusted to bring two bunches into adjacent RF cycles ($\Delta t = 0.77$ ns)
 - a GHz subharmonic deflecting cavity used to deflect one bunch onto an adjacent FEL
 - path length difference compensates the temporal separation

Evolution of peak and average brightness

SIMULATED 10keV HB-SASE PULSES

xfel.ac.uk

Facilities Council